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The trajectories of particles in steep, symmetric 
gravity waves 

By M. S. LONGUET-HIGGINS 
Department of Applied Mathematics and Theoretical Physios, 

Silver Street, Cambridge, and Institute of Oceanographic Sciences, Wormley, Surrey 
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To gain insight into the orbital motion in waves on the point of breaking, we first 
study the trajectories of particles in some ideal irrotational flows, including Stokes' 
120" corner-flow, the motion in an almost-highest wave, in periodic deep-water waves 
of maximum height, and in steep, solitary waves. 

In Stokes' corner-flow the particles move as though under the action of a constant 
force directed away from the crest. The orbits are expressible in terms of an elliptic 
integral. The trajectory has a loop or not according as q 5 c where q is the particle 
speed at  the summit of each trajectory, in a reference frame moving with speed c. 
When q = c, the trajectory has a cusp. For particles near the free surface there is a 
sharp vertical gradient of the horizontal displacement. 

The trajectories of particles in almost-highest waves are generally similar to those 
in the Stokes corner-flow, except that the sharp drift gradient at the free surface is 
now absent. 

In deep-water irrotational waves of maximum steepness, it  is shown that the surface 
particles advance at  a mean speed U equal to 0.2746, where c is the phase-speed. In  
solitary waves of maximum amplitude, a particle a t  the surface advances a total dis- 
tance 4.23 times the depth h during the passage of each wave. The initial angle a 
which the trajectory makes with the horizontal is close to 60". 

The orbits of subsurface particles are calculated using the 'hexagon' approximation 
for deep-water waves. Near the free surface the drift has the appearance of a thin 
forwards jet, arising mainly from the flow near the wave crest. The vertical gradient 
is so sharp, however, that at  a mean depth of only O-OlL below the surface (where L 
is the wavelength) the forwards drift is reduced to less than half its surface value. 
Under the action of viscosity and turbulence, this sharp gradient will be modified. 
Nevertheless the orbital motion may contribute appreciably to the observed 'wind- 
drift current '. 

Implications for the drift motions of buoys and other floating bodies are also 
discussed. 

1. Introduction 
In progressive gravity waves of very small amplitude it is well known that the 

orbits of the particles are either elliptical or circular (see Lamb 1932, ch. 9). In  steep 
waves, however, the orbits become quite distorted, as is shown by the existence of 
a mean horizontal drift or mass-transport in irrotational waves (Stokes 1847; Rayleigh 
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1876). In  the extreme case of very steep waves the calculation of the trajectories has 
dresented some difficulty owing to the unavailability, till recently, of suitable 
approximations for steep waves. To some extent this difficulty has been overcome in 
recent papers by the present author (1973, 1974, 1979) and the main purpose of the 
present paper is to take advantage of these approximations to determine the quali- 
tative and quantitative behaviour of the particle orbits in steep waves. 

A second and more general obstacle has been to find an appropriate transformation 
from the description of a wave motion in Eulerian co-ordinates, which are most 
suitable for steady, irrotational motions, to a more Lagrangian type of description. 
(It will be recalled that Gerstner’s exact solution in Lagrangian co-ordinates, being 
highly rotational, has correspondingly little physical interest.) Even the exact Eulerian 
solution represented by Stokes’ simple corner-flow (1880) appears not to have been 
considered from a Lagrangian viewpoint, in spite of its obvious interest and relevance 
to steep gravity waves. 

In  5 2 of the present paper we therefore determine analytically the trajectories in 
Stokes’ corner-flow. It turns out that each fluid particle moves as though it were 
under the action of a central force of constant strength, directed away from the crest 
of the wave. The resulting trajectory is described analytically by known functions, 
in the form of an elliptic integral. Paradoxically, the orbit of a particle a t  the surface 
is smooth even at  the highest point, precisely where the free surface has a discon- 
tinuity in slope. 

In  $ 4  we consider the particle trajectories near the crest of a steep but still rounded 
wave, and here we make use of a simple but accurate approximation to the flow in the 
crest found very recently (Longuet-Higgins 1970). Again the solutions are expressible 
in terms of known functions, so that we have an addition (though admittedly only an 
approximate one) to the limited number of known solutions in Lagrangian variables. 

The results of 5$2 and 4 apply in practice only to the upper part of progressive waves. 
To determine the complete trajectory of surface particles in a periodic wave, we use 
in 5 5 the form of the wave of maximum amplitude as calculated by Yamada (1957). 
We find, for example, that in each complete orbit a particle advances horizontally 
through a distance 0.38 times the wavelength, and that its mean speed of advance is 
0.27 times the phase speed. 

In  $ 6 we consider the solitary wave of maximum amplitude, and find the trajectory 
of a particle a t  the surface during the passage of each wave. Subsurface trajectories 
for periodic waves are studied in $ 7. Here the hexagon approximation for deep-water 
waves (Longuet-Higgins 1973) is found particularly useful. The calculations reveal 
the presence of a sharp gradient in the drift near the free surface, when viscous forces 
are neglected. 

In $ 8 we discuss the applicability of these results to real waves, both in laboratory 
channels and in the ocean. 

2. The Stokes corner-flow 
Suppose the crest travels to the right, and first let us take axes attached to the 

crest as in figure 1, with the y axis horizontal and the x axis vertically downwards. 
We write 

z = x+iy  = reis. (2.1) 
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0 

FIGURE 1. Co-ordinates for the Stokes’ corner-flow, and streamlines 
of the motion relative to moving axes. 

X = #+i$ (2.2) Then if 

denotes the complex velocity potential, the components of velocity u, v in the x, y 
directions are given by 

(2-3) 

a star denoting the complex conjugate. 
Stokes’ solution (1880) for the corner-flow, in Eulerian co-ordinates, can be written 

w = U + ~ V  = (dx /dz )*  

x = icd, -in G 8 G +n, 12.4) 

where c = $9, (2.5) 

w = u+iv = -i(gz*)& 

and g denotes the acceleration due to gravity. From (2.3) this implies the simple 
relation 

(2.6) 

for the velocity. This is of course steady and independent of the time t ,  in the relative 
frame of reference. 

Now to find the trajectory of a given particle, let Z be the position of a particle 
referred to Lagrangian co-ordinates. From (2.6) we have then 

d Z / d t  = w = -i(gZ*)*, (2.7) 

80 

Since (Z/Z*)* = eie (2.9) 

it follows that the particle acceleration is everywhere equal to +g directed away from 
the crest (as shown differently by Longuet-Higgins 1963). Hence each fluid particle 
moves exactly as if it  were in a central field of force, of constant strength, with centre 
of repulsion a t  the crest. 

Now for a particle in any central field of force the angular momentum about the 
origin is invariant (see for example Ramsey 1937). This result is equivalent to Kepler’s 
second law, that the area swept out by the radius vector from the sun to a planet 
increases uniformly with the time. Hence we have 

+dO/dt = constant = A (2.10) 
17-3 
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say. The value of A can be found from the fact that rde/dt = r-la$/ae, so 

A = a$/ae = -&brtcosge = -g*ha, (2.11) 

where h denotes the height of the origin above the trajectory a t  its mid-point 8 = 0. 
It is easily seen also that A = - $11.. Now from (2.11) we have 

r2 cost (88) = h2 (2.12) 

and so from (2.10) and (2.12), provided h p 0, we obtain 

Esecs ($8) = A/h2 = - (g/h)i. dt 
(2.13) 

Hence (2.14) 

Lastly setting tan ($8) = - p  (2.15) 

we obtain (2.16) 

The integral on the right is an elliptic integral, expressible in terms of known functions 
(see Bowman 1963). In  practice, however, it can be evaluated readily by numerical 
quadrature, using Simpson's rule or other convenient methods. 

In  a progressive motion, where the wave crest travels to the right with speed C, 

the trajectory of a particle will be given by co-ordinates X = x, Y = y + ct where from 

(2-4) Z + ~ T J  = (X/iC)j = C*($-i$)g = h( l  -ip)u)Q (2.17) 

and t is given by (2.16). As in (2.16) we have written p = q5/$ = -tan($B). It is 
convenient to define a natural length-scale 

1 = c2/g (2.18) 

(so that the length of a deep-water wave is roughly 274 and a dimensionless parameter 
for each trajectory, namely 

K h/l = gh/c2 = qa/c2, (2.19) 

where q is the particle speed at the summit of the trajectory, in the steady motion. 
Then from (2.16) and (2.17) we find 

(2.20) 

(see figures 2 and 3). 
The case K = 0, when the particle is on the free surface, requires separate considera- 

tion, but this is very simple. For, a particle at the free surface (say on the forward face) 
behaves as though it were on a smooth plane inclined a t  an angle - 30" to the hori- 
zontal. Hence 

(2.21) 

Since the velocity a t  the crest is horizontal and equal to c we have by integration 
simply 

(2.22) 
33 

XI1 = 472,  Y / l  = 7 + - 7 2 ,  
8 



Trajectories of particles in water waves 

-- 2 - - 1  1 2 

601 

5 

XI1 
FIGURE 2. Trajectories of particles in the Stokes' corner flow, 

relative to fixed axes: K = 0, +, $, 3 and 1. 

where 7 = gt/c. At the crest itself there is a discontinuity in the acceleration, but no 
discontinuity in the velocity, and the orbit is therefore apparently smooth. On the 
two sides of the origin the trajectories take the forms of parabolas with axes inclined 
at angles 5 30" to the vertical and passing through the point Y = 0, X = E .  The para- 
bolas intersect in the plane of the symmetry at a distance X = $1 below the crest. 

In figure 2 we have plotted the trajectories for K = 0, 4, a, 4 and 1. The motion is in 
each case forwards at the crest, except that when K = 1 the trajectory has a cusp at 
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YII 

XI1 
FIGURE 3. Trajectories of particles in the Stokes' corner flow, 

relative to fixed axes: K = 1, 1.6, 2.0, ..., 4.5. 

X = 1. In  figure 3 are plotted the trajectories for K = 1.0 (0.5) 4.5 showing that when 
K > 1 the flow is always backwards. 

In  applying the result to periodic waves, it  must be borne in mind that the corner- 
flow applies only to a region near the crest, of diameter small compared to the wave- 
length. Hence for waves in deep water, for example, we should have X and Y both 
small compared to 1. The complete particle orbits for progressive waves will be in- 
vestigated in $ $ 5  and 6. 
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3. Time-integration in steady flows: a general method 
The following is a general method for determining the trajectories of particles in a 

progressive wave (reducible to a steady flow) when the Eulerian co-ordinate z is 
given as a function of x, instead o f  vice versa. 

Let D/Dt denote differentiationfollowingaparticle. Then since Dz/Dt = w = (dX/dz)* 
we have in a steady flow 

Taking real and imaginary parts of each side we get 

-- D+ - 0. 
Dt 

The second of these equations tells us only that $ 
from the first we have on integration 

Since $ is constant in the integrand, this gives us t 

is constant on a streamline, but 

(3.3) 

as a function of $ or x, and vice 
versa. From z ( x )  we then find zas  a function o f t .  To convert to a stationary frame of 
reference we simply add to the horizontal co-ordinate the term ct. 

The expression (3.3) is equivalent to the formula t = J”d$/qZused by Rayleigh (1876) 
and others in discussing the mass-transport velocities in an irrotational wave. 

Clearly this method can be applied to the Stokes corner-flow in 3 2. Thus starting 
from (2.4) we have x = ( ~ / i C ) t  and hence 

which is equivalent to (2.16) when we writep = #/$. This approach; however, misses 
the physical interpretations given above. 

In $34 and 8 the general formula (3.3) will be applied to determine the particle 
orbits in some other interesting cases. 

4. Trajectories in the almost-highest wave 
In steep waves, short of the highest, the free surface is still rounded a t  the crest. 

When the radius of curvature is not zero but is still small compared to the wavelength 
or the depth, it can be shown that the flow near the crest approaches asymptotically 
a limiting form, whose scale is determined simply by the radius of curvature a t  the 
summit. The precise form o f  this asymptotic flow has been calculated by Longuet- 
Higgins & Fox (1977). 

For our purpose it will be convenient to use a simple but very close approximation 
derived in a companion paper (Longuet-Higgins 1979). If we take g = I and the unit 
of length as q 2 / 2 g ,  where q denotes the particle speed a t  the crest in a reference frame 
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moving to the right with the phase speed then it was shown that the expression for z 
as function of x is simply a- yix 

z =  
(P - ix)Q ’ 

where a, /3 and y are constants: 

$=-- 2t - 4-8065,\ 
3)- 15 

01 = $Q = 1.6876, 

y = (#)# = 1.3104. 

The free surface a t  its highest point passes through 
precisely. And a t  infinity we have 

2 - (- +iX)* 

the point z = 1 where q2 = 2 

(4.3) - ._ 
in agreement with equation (2.4). 

To find the particle trajectories we have first from (4.1) 

where a = + a - p y =  -a+$*; s = g y .  

So from the general formula (3.3) we obtain 

5 2  + €262 

where we have written 
I: = & - E $ ,  and 11 = p+$, (4.7) 

which are constants during the integration. The integral (4.6) is an elliptic integral, 
expressible, as before, in terms of known functions. 

In  a stationary reference frame the trajectories are given by 

X + i Y  = z+ ic t .  (4.8) 

Introducing as before the length 1 = c2/g, we have from (4.1) and (4.6) 

(4.9) 

The vertical distance H of the highest point of the trajectory below the origin is given 

The relative speed q of a particle at the highest point (9 = 0 )  is given by 

-=-  q2 72 1 ( P + l V  
G2 ,252 = 2 (6--E*)2‘ 

In  particular for a particle a t  the free surface (@ = 0)) 

H I q 2 2  - = -  - 1 c2’ c2 = 2 
in the units that we have chosen. 

(4.10) 

(4.11) 

(4.12) 
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X l l  
FIGURE 4. Trajectories of particles in the almost-highest wave, 

for K = 4, a, 3 and 1, when pa/ca =+-. 

CZ $ * / I  qa/ca 

16 2 o*oooo 0.0625 0.125 
16 4 4.2687 0.2182 0.250 
16 8 14.7314 0.4871 0-500 
16 16 42.1706 0.9958 1.000 

TABLE 1 

It is interesting to compare the particle orbits with those in figure 2 when 2/c2 is 
equal to the corresponding value of q2/c2 for one of the inner trajectories, say the 
trajectory K = 0.125. Then in our present units we must have c2 = 16, hence 

H/I = 0.0625. 

This is the uppermost trajectory in figure 4. The remaining trajectories correspond to 
the lower trajectories in figure 2, that is to say K = 0.25, 0-5 and 1.0, or q2 = 4, 8 and 
16 respectively. The corresponding values of 1c. are found from (4.11), or rather 

(4.13) 

where the positive value of q is taken. When q = c = 4 the trajectory has a cusp. 
This corresponds to $ = 42.770, HI1 = 0.9958. The corresponding values of q2/c2 
from equation (4.10) are shown in table 1. From this it is clear that when x / 1  > 0.5 
the trajectories differ little from those in the highest wave. However, close to the 
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crest they are appreciably different. In  particular, the almost-highest wave does not 
have the very sharp gradient of orbital motion that is found in the Stokes' 120" corner- 
flow for particles close to the free surface. 

5. Periodic waves in deep water: surface particles 
The particle trajectories found in $ 5  2 and 4 above will apply strictly only to parti- 

cles in the neighbourhood of a wave crest, that is to say to the uppermost part of the 
orbits in a periodic wave. To obtain the complete orbits, we shall consider first a 
specially simple case, that of the highest progressive wave in deep water (see figure 5). 

A R 

FIQURE 5. Axes and co-ordinates for the highest gravity wave in deep water. 

For particles at the free surface the pressure is constant, so that we can use Ber- 
noulli's equation. Thus if y denotes the vertical displacement of the free surface 
(positive upwards) as a function of the horizontalt co-ordinate x then (in a frame of 
reference moving with the phase-speed) we shall have for the particle speed q a t  any 
instant 

q2 = W Y O  - Y)' (5.1) 

where yo is the value of y a t  the sharp crest (corresponding to q = 0) .  But if 

8 = arc tan (dy /dx)  

denotes the inclination of the free surface to the horizontal we shall have 

a x p t  = - e, 
(dx/dt)2 (1 + tan2 8) = 2g(y,, - y ) .  hence 

Therefore by integration 

(5.2) 

If y ( x )  is given, this relation serves to determine t as a function of x .  To avoid the 
square-root singularity a t  y = y o  it  is convenient to write 

t For the rest of this paper we use the more usual notation; there will be no confusion with 
§ § 2  and 4. 
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FIUURE 6. The trajectory of a surface particle in a deep-water wave of maximum height, for 
Yamada’s profile. The broken line shows the corner-flow trajectory (5.13). 

The profile of a deep-water wave of maximum height was accurately calculabd by 
Yamada (1957) and also Schwartz (1974).  Using the co-ordinates of points (x,y) on 
the profile as given in Yamada’s table 2, we have calculated t from (5.5) and in figure 6 
have plotted the particle trajectory 

xo-x = P, Yo-Y = r2, (5 .4)  

where xo is the x co-ordinate of the wave-crest, and then (5.3) reduces to 

X = x + c t ,  Y = y, (5.6) 

where c is the calculated phase speed: 

c = 1*0923(gL/2~)*.  (5.7) 

Further data are given in table 2 below. The total time T taken for the particle to 
describe a complete orbit (twice the last entry in table 2) is 

T = 3*1591(L/g)&. (5 .8 )  

In this time the particle has advanced a distance (cT - L) ,  and so its mean speed of 

(5 .9 )  
advance U is given by 

U = (cT - L)/T = ~ ( 1 -  L/cT). 

With the above values of c and T one obtains 

U / C  = I - L / c T  = 0.274. (5.10) 

In other words, the mean speed of advance is a little over one-quarter of the phase 
velocity. The proportion of a wavelength advanced in each complete orbit is given by 

[XI c T - L  CT 
L - L  - L  

1 = 0-377. __---__ (5.11) 
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X I L  
0~0000 

- -0165 
- ,0282 
- -0331 
- .0300 
- *0180 

YIL (S/L)* t X I L  YIL (glL)i t 

0~0000 0~0000 0.0034 0.0985 0.9716 
-0049 a1801 -0347 el162 1.1237 
-0176 -3483 *0758 -1298 1.2766 
*0354 *5091 -1271 *1383 1.4216 
~0662 a6664 -1883 *1412 1-5796 
-0779 *8191 

TABLE 2. Co-ordinates of points on the trajectory of a particle 
at the surface of a deep-water wave of maximum amplitude. 

From 5 2, we would expect the upper part of the trajectory in figure 6 to be approxi- 
mated by the two parabolas 

and 
(5.12) 

where I = c2/g and T = ( t  - to) g /c .  These expressions would be exact if the free surface 
continued to have a downward slope of 30°, as a t  the crest. In  fact, equations (5.12) 
give correctly the curvature of the trajectory at its highest point. To compare (5.12) 
with the exact orbit we take into account that 

I = 1*1932(L/2T) = 0.1899L. (5.13) 

The parabolic curve is shown in figure 6 by the broken line. It will be seen that it 
lies remarkably close to the other curve, down as far as the lowest part of the orbit, 
Y / L  < 0-03. 

6. The highest solitary wave 

solitary wave, where the ratio of wavelength to depth is infinite. 

for the surface profile the expression 

As an example of a wave in water of finite depth we take the extreme case of the 

Taking g = 1 as before, and the undisturbed depth h as unity also, we may adopt 

y = A e-alzl+ Be-Bl4, (6.1) 

where I A = 1.5389, a = 1.0495, 

B = -0.7093, p = 1.4630, 

and F2 G @/gh  = 1.6592 (6.3) 

(see Longuet-Higgins 1974). This was shown to agree with Yamada’s numerically 
calculated profile (Yamada 1958) within about O.OO2h. Substituting into the general 
formulae (5.3) and (5.5) we can immediately find the orbital time t for a particle at  the 
surface, and from (5.6) the co-ordinates ( X ,  Y )  of a point on the trajectory. We measure 
X and Y horizontally and vertically from a point at the undisturbed water level, 
directly below the highest point of the trajectory (see figure 7). 

In  figures 7 and 8 the central curve corresponds to the passage of a single solitary 
wave (see also table 3). The maximum height of the trajectory equals the wave height, 
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FIGURE 8. Trajectory of a surface particle in a solitary wave, 
with mass flux compensated by a uniform return flow. 

0.829h, and during each hop the particle is displaced forwards through a total distance 
4-229h. The trajectory rises initially a t  an angle 6 given by 

from equation (6.1), since for large z we have y N A e-ax. From Stokes's relation 

tan a 
a 

-- - F a  

it follows that 6 = a = 1.0495c = 60.13' 

It may be remarked that if the conjecture of Lenau (1966) that F2 = 3tn-1 = 1.6540 
is correct, then 6 = 60" exactly; but this conjecture is disputed by Witting (1975). 
For data relating to this question see Longuet-Higgins & Fenton (1974). 

Figure 7 shows the trajectories that would occur in a succession of widely separated 
solitary waves, assuming there is no backwards flow to compensate for the forwards 
displacement of mass M in each wave. If owing to the presence of a beach or other 
obstacle the net forwards displacement is zero, then between each wave there must 
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X l h  
0 
0.413 
0.776 
1.088 
1.361 
1.666 
1.732 
1.868 
1.949 

~ ~~ ~ 

Y l h  
0.830 
0.815 
0.773 
0.705 
0.616 
0.614 
0.408 
0-307 
0.21 9 

W h ) +  
0 
0.340 
0.680 
1.019 
1.369 
1.700 
2.044 
2.394 
2.766 

X l h  
2.012 
2.063 
2.080 
2.096 
2.106 
2.110 
2.112 
2.114 
2.1 16 

Y l h  
0.147 
0-093 
0.066 
0.032 
0-0 17 
0.008 
0-004 
0.002 
0 

t ( g l h ) i  
3.134 
3.636 
3.963 
4422 
4.914 
5.442 
6.007 
6.609 
W 

TABLE 3. Co-ordinates of points on the trajectory of a solitary wave of maximum height. 

be a mean backwards displacement - M / h .  For illustration let us suppose that the 
backward flow is irrotational and so uniform with depth. Hence the backwards dis- 
placement at  the surface is just - M / h  also. In  figure 8 we show the corresponding 
trajectories, when for M we take the value 1-963h2 corresponding to the present 
approximation [Longuet-Higgins 1974, equation (6.14)]. In  the limiting case when the 
separation between successive waves is infinite, then the trajectories have a sharp 
corner a t  their lowest points, but otherwise the corners will be slightly rounded. In  
the limiting case the net forwards displacement during one complete wave cycle is 
2.266h. The ratio of the net horizontal displacement [XI to the total height [ Y ]  of 
the trajectory is thus 2.266 + 0.829, or 2-73 approximately, compared with 2-67 for 
a wave of maximum height in deep water. It is possible that this ratio is nearly inde- 
pendent of the ratio of wavelength to mean water depth. 

7. Subsurface particles 
In  5 2 we saw indications that in waves of maximum height there may be a very 

sharp gradient of the drift velocity for particles close to the surface. To determine the 
trajectories for subsurface particles in a periodic, irrotational wave in deep water we 
make use of the simple but very close approximation to the motion given by Longuet- 
Higgins (1973) in which the surface profile of six successive waves is transformed 
into the sides of a hexagon by the substitution 

The vertices of the hexagon correspond to six successive wave crests. When [,, = einlo 
then one vertex is on the real axis of 5, and the trough z = 0 corresponds to the mid- 
point of one side. The wave profile is given simply by 

the wavelength L being normalized to in. In  the general case (7.2) becomes 

z = z + i y  = iln([/&). ( 7 4  

y = lnsecx, -Qn < x < in, ( 7 4  

3 
L n  5 = -1nsec 6). 

The crest-to-trough height is then 

-1n - = 0*1374L, (ii) 

(7.3) 

(7.4) 

which differs from the accurate value 0.1412L by only 0.0038L. 
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One clear advantage of this approximation is that the velocity potential x in the 
interior is given by the closed expression 

x =  -icInW, J W [  < I (7.5) 

where 

1.1129. 
2 

and K is a constant: 
-- 
34K - lo = 

(7.7) 

The streamlines (in the steady flow relative to axes moving with speed c) are circles 
in the W-plane. In  fact if we write W = p exp [i(a + in)] then from (7.5) 

4 = c(a+$gn), @ = -clnp. (7.8) 

The free surface corresponds to p = 1, and the flow in the neighbourhood of a crest, 
say W = I, is a Stokes corner-flow as it should be. Elsewhere on the free surface the 
pressure is very nearly constant (see Longuet-Higgins 1973, 9 4). 

To obtain the particle trajectories we apply the formula (3.3). Now from (7.1), (7.5) 
and (7.6) we have 

On substitution in 

dz dz d[ dW i K iW =---=- - & d[dW ax [(I-W6)f c * 

(3.3) we obtain 

(7.9) 

(7.10) 

and then the co-ordinates (X, Y )  of the particle trajectories are given explicitly by 

(7.11) 

Because in this expression ct is given by (7.10) it  is clear that ( X + i Y ) / L  and hence 
U / c  are formally independent of the phase-velocity c. The latter is determined from 
the constant pressure condition at  the free surface. On the other hand, the solution 
(7.11) is essentially a kinematic expression determined by the free surface (7.2). 

In evaluating < it is convenient to take the integration first along the real axis of 
W to the point W = p,  and then along a streamline p = constant. Thus 

say. When p = 1,  then we have in particular 

a da s (2  sin 3a)4 
G( 1, a)  = e@= 

and writing sin 3a = s3 we find 

(7.13) 

(7.14) 

which converges very rapidly when s < 0-5, say. Likewise we find from (7.10) 

ct = A+B(s-&Bs5+&+'- ...), (7.15) 
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FIUURE 9. Orbits of subsurface particles in the deep-water wave of maximum steepness. 

P 
1.0 
0.999 
0.998 
0.997 
0.995 
0.990 
0.98 
0.97 
0.96 
0.90 
0.86 
0.80 
0.75 
0.70 

F ( P )  

1.1129 
1.1047 
1.0998 
1,0957 
1.0887 
1.0745 
1.0517 
1.0324 
0.9990 
0.9290 
0.9163 
0.9039 
0.7568 
0.7041 

&i~IL 
0.1647 

.1261 
-1139 
-1057 
-0942 
-0764 
-0668 
-0449 
-0303 
*0133 
.0062 
-0029 
.0013 
.0006 

Y&IL 
0 

- -0008 
- .0016 
- 0024 
- -0040 
- -0079 
- -0160 
- *0242 
- -0412 
- *0862 
- -1353 
- a1889 
- .2472 
- a3106 

Y-xIL 
0.1374 

.1302 
a1260 
.1225 
-1164 
* I  038 
-0833 
-0657 
a0342 

- '0315 
- a1001 
- '1647 
- '2309 
- '2998 

F/L 
0.0449 

-0437 
*0425 
a0413 
.0390 
.0334 
-0224 
a0116 

- -0097 
- *0634 
- .1190 
- a1774 
- ~2393 
- '3053 

TIT-, 
1.3292 
-2522 
a2278 
-21 14 
el883 
-1628 
-1136 
-0899 
.0607 
*0266 
-0124 
*0058 
-0026 
-001 1 

UlC 

0.2471 
.2014 
-1866 
.1746 
.1586 
-1326 
.1020 
.0815 
.0572 
.0259 
.0123 
*0058 
.0026 
.0011 

TABLE 4. Parameters of the particle orbits in a deep-water wave of maximum height: 
hexagon approximation. 
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where A is an arbitrary constant (determined by the origin oft)  and 

B = {2+F(1)]4, (7.16) 

where F(1) is the constant on the right of equation (7.7). For checking the calculations 

1 dp 3* 
we may use the relations 

(7.17) 

which can be derived by integration round the closed contours 

W = (0, i ,e@n, 0) and (0 ,  l,e*{", 0) .  

In figure 9 the trajectories have been plotted for various values of p including 
p = 1 corresponding to a particle at  the free surface. Other parameters, including 
the mean depth $7 of each streamline p constant (in the steady frame of reference), 
are given in table 4. 

From figure 9 it  can be seen how rapidly the orbital motion diminishes with the 
mean depth of the trajectory below the free surface. This is as we should expect from 
the corner-flow expression (2.20)) which is of the form 

( X  + i Y)/Z = (h / l )  p (p) + (h/l)* &&I. (7.18) 

To find U / c  we must divide by the total time t taken for one complete orbit. From 

ct (h/l)* &&). (7.19) (2.16) this is of the form 

Hence for large p, U / c  will behave like (h/Z)t, plus a constant, and aU/ah will behave 
as (h/Z)-*. In  figure lO(a) we have plotted V/c for the periodic deep-water wave, as 
a function of (1  -p)*.  The computations confirm that U / c  behaves linearly with 
(1 -p)* near p = 1 .  In  figure l O ( b )  U / c  is plotted against the mean depth of each 
streamline, showing that the gradient of the mean drift velocity is theoretically 
infinite a t  the free surface, where i j  = yo. It is remarkable that a decrease in $7 of only 
0.01L reduces U l c  to less than half its value at the free surface. 

A t  the surface itself we have U / c  = 0.248, as compared to the accurate value 0.274 
found in 0 5. 

These surface values may be compared with Stokes's second-order expression 

U = (ak)2ce2kg ( k  = 27r/L) (7 .20)  

in which it is natural to take 2a = 0+141L, the theoretical height of the highest wave. 
Thus ak = 0.443 and when y = 0 then U / c  = 0.196. 

At deeper levels, however, this application of the Stokes formula leads to an over- 
estimate of the drift velocity by a factor greater than 2. Since the exponential form 
of the drift velocity becomes asymptotically correct as ky --f - m, for all wave ampli- 
tudes, it is preferable to adjust the value o f a k  in (7.20) so as to agree with the asymp- 
totic value as ky -+ - co. By expanding 5 and ct in powers of p when p is small it may 
easily be shown that 

$7 N In ( K p ) ,  cT N +n(l +&p12), (7.21) 
and so, since k = 6, 

(7.22) U / C  = 1 - cT'/cT N &p12 N & e2k@-Vo), 
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UIC uic 
0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 

FIGURE 10. Drift velocityinadeep-water wave of maximum steepness (a)  as afunction of (1  -p)4, 
(b )  as a function of the mean depth 3 of the streamline p = constant. 

where ?j is the mean depth of the streamline; from which it follows that a t  the free 
surface = Tj,, Stokes’s formula will give 

U / C  + &= 0.082, 

only about one-third of the accurate value. 

applicable over the whole range of depths. 
We may conclude that, for very steep waves, Stokes’s second-order formula is not 

8. Discussion 
The salient feature of the drift velocity profile for a steep, irrotational wave is 

clearly the very strong forwards drift a t  the surfizce, with strong vertical gradient of 
velocity. This was to be expected from the fact that in a Gerstner wave, where (by 
superposing a shear) the particles are made to have zero drift velocity (Lamb 1932, 
$251)) it  is found that the vorticity of the fluid has to become negatively infinite 
at the free surface. 

It is, of course, paradoxical that in the irrotational waves that we have studied in 
this paper, there should be an apparent gradient in the Lagrangian mean velocity. 
But this effect was already well known in principle from Stokes’s classic paper (1847). 
It may be regarded as a consequence of the fact that the integrand in the expression 
(3.3) for the time t is not in general an analytic function of z or of x. 

The source of the strong drift gradient has been shown in $8 2 and 7 to be in the 
corner flow near to the wave crest, where the Eulerian velocity gradient becomes 
infinite like r-4. When the waves are not quite at  their maximum height as in $4, 
this singularity disappears. On the other hand, once a whitecap has formed, it is 
clear that there must be a very strong vortex sheet (or shear layer) on the forwards 
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face of the wave. If the steady wave of maximum amplitude be regarded as a critical 
case separating steady breaking waves (or spilling breakers) from steady, symmetric 
non-breaking waves, then we see that in the strong forwards drift velocity at  the 
surface we have, as it were, a whitecap waiting to be born. 

There are at  least two ways in which the present theoretical flows differ from real 
water waves, especially sea waves. The first is in the neglect of viscosity. We know 
that the condition of zero tangential stress at  the free surface implies that the 
normal gradient of the Lagrangian velocity be zero (see Longuet-Higgins 1960). So 
we may expect that in real fluids the infinite drift-gradient a t  the surface will be modi- 
fied by a viscous boundary layer of finite thickness - ( v / v )* ,  where v is the kinematic 
viscosity and is the radian frequency of the waves. Beyond this thin layer the mean 
drift velocity may, paradoxically, be increased by the viscosity; for waves of low 
amplitude, the drift gradient is known to be doubled (Longuet-Higgins 1960). As the 
time t after starting the motion is increased, we may expect an outer layer to grow, 
with thickness proportional to (vt),. Turbulence will modify the drift profile more 
drastically. 

A second difference between ocean waves and waves in a laboratory channel is 
the random nature of ocean waves, the wave heights, as is well known, being distri- 
buted approximately according to a Rayleigh distribution, when the frequency 
spectrum is sufficiently narrow. This means that the waves are not of uniform height, 
either in space or time; the height of each individual wave rises to a maximum on 
passing through a wave group, and then diminishes (Donelan, Longuet-Higgins & 
Turner 1974). Thus I;he sharp crests or whitecaps are formed only sporadically, and 
at a rate of occurrence depending on the mean rate of supply of energy by the wind. 
Hence in practice one must expect that even in high seas, and with the assistance of 
whitecapping, the large drift velocities associated with steady waves of limiting 
height will not be attained on the average. Nevertheless, it  is reasonable to suggest 
that some part of the ‘surface wind-drift ’ observed in the wind-generated waves (Wu 
1968) may be simply a kinematic effect associated with the irrotational motion in 
sharp wave crests, whenever these occur. 

The action of the wind, if in the same direction as the waves, will presumably be to 
increase the surface shear, and thus to counteract the effects of the viscous shear 
stresses in the water, particularly near the wave crests. Laboratory studies of wind- 
generated waves (Wu 1968) indicate that the ‘wind drift’ velocity is about 0.04V, 
where V is the mean wind-speed in the flume. Since at these short fetches the wind- 
speed exceeded the phase-speed by a factor of order Iq(see Wu 1968, figure 4) this 
indicates ratios U l c  of the order of 0.6, certainly greater than the kinematic effect 
alone would account for. Moreover the drift velocity profiles are nearly linear with 
depth, indicating the predominant role played by turbulent mixing, under these 
conditions. 

The most directly relevant application of our results is, therefore, likely to be in 
the interpretation of drift velocity measurements in channels with mechanically 
generated waves, such as reported briefly by Nath (1978). Here the velocities of 
buoys, spheres and floating discs were measured in a flume 104 m long, 3.7 m wide 
and 3.4 m deep, in the presence of regular waves with periods ranging from 1 to 4 s. 
The experiments were made under conditions where the influence of wind on the 
surface currents might be expected to be slight. The maximum values of U l c  that 
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were observed were those for the small discus, whose speed generally exceeded that 
of the small sphere by a factor of between 1.2 and 1.5. This indicates a drift gradient 
within a distance from the surface of the same order as the diameter (3.7 cm) of the 
sphere. On the other hand the observations appear not to have been made in wave8 
of less than maximum height and then extrapolated linearly up to the assumed limit. 
The maximum values of U l c  so estimated were about 0.15. This value is consistent 
with the finding in 0 2 of this paper that only a very small departure ofthe waves from 
their steady, limiting conditions will sharply reduce the surface drift velocity. 

In addition it must be pointed out that the theoretical values of U / c  will be quite 
sensitive to small changes in the phase-velocity due, for example, to a finite depth of 
water or, in laboratory channels, to a net backward flow compensating the forwards 
mass transport. Thus a change in c of only 15 per cent would be enough to reduce the 
theoretical value of U l c  from 0.27 for waves in infinitely deep water to 0.16, about 
the same as reported by Nath. Further experiments are desirable in order to determine 
which of the effects just mentioned was dominant. 

In this paper, we have not attempted an investigation of the stability of the flows 
under consideration. Nevertheless in regions of strong velocity gradient, such as occur 
near the wave crest, it  is to be expected that viscous stresses will tend to destabilize 
the flow, quite apart from the non-viscous modes of instability already known 
(Longuet-Higgins 1978a, 6 )  which have been shown to lead swiftly to overturning of 
the free surface (Longuet-Higgins & Cokelet 1979). If viscous instabilities having 
comparable rates of growth can be shown to exist, then another mode of wave 
breaking will have been established. 
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